Vreugdenhil (2025):

Booms, Busts, and Mismatch in Capital Markets: Evidence from the Offshore Oil and Gas Industry

Hulai Zhang

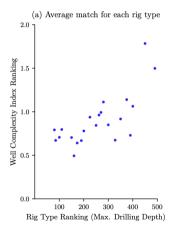
Env.Climate

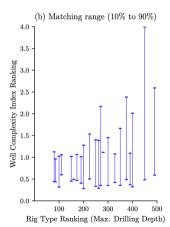
July 28, 2025

Motivation and Core Idea

- Capital reallocation over the business cycle is a key driver of aggregate productivity
 - However, micro-level mechanisms within industries are not well understood
 - This is primarily due to the lack of data on firm-to-firm contracts
- This paper investigates one such mechanism: matching in decentralized capital markets
- Core Idea: The "Sorting Effect"
 - During booms, markets become "thicker," increasing the option value of searching for good matches
 - Agents become more selective and avoid low-surplus matches
 - This leads to stronger positive assortative matching (less mismatch) during booms
- ⇒ Research Question: quantifying the welfare importance of the sorting effect

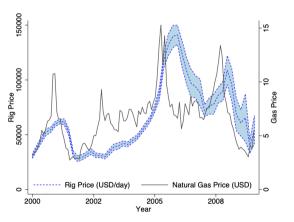
Background: Offshore Oil & Gas Drilling

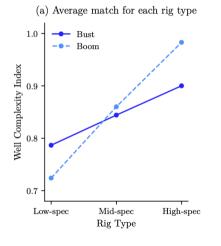

- A decentralized market ideal for studying search and matching
- Setting: 2000-2009, shallow water US Gulf of Mexico
- Two sides of the market with vertical heterogeneity:
 - Projects (Demand): Oil and gas companies (BP, Chevron) rent rigs to drill wells
 - Heterogeneity in complexity: Mechanical Risk Index (MRI)
 - Capital (Supply): Rig companies own drilling rigs
 - Heterogeneity in efficiency: maximum drilling depth
 - Neither side of the market is concentrated
- Data: Novel dataset combining:
 - Contract data (IHS, Rigzone): prices (dayrates), duration, contracting parties
 - Well characteristics (BSEE): depth, complexity factors
 - Lease auction data: proxy for expected project value


Stylized Facts in the Decentralized Market

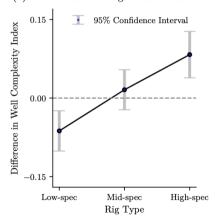
- (1) Positive assortative matching with imperfect sorting
- (2) Strong cyclicality driven by oil and gas prices
- (3) Evidence of search frictions

Stylized Fact 1: Positive Assortative Matching


Higher-efficiency rigs consistently match with more complex wells, but sorting is imperfect.


Stylized Fact 2: Strong Cyclicality

The market experiences large exogenous shocks driven by global energy prices. Rig prices and utilization are strongly pro-cyclical.



Cyclical Patterns in Matching Quality

The strength of assortative matching is pro-cyclical.

(b) Differences in average match in boom vs bust

Stylized Fact 3: Search Frictions

(1) Price dispersion

	(a)	(b)		
	Using aggregated rig types	Using disaggregated rig types		
$1-R^2$	0.37	0.27		
$SD(\tilde{p}_{it})$	11	9		
$SD(\hat{p}_{it})$	18	18		

(2) Evidence of mismatch

	Change	in Match	Value (Millions USD)
	Bust	Boom	Difference: Bust vs Boom
Optimal Match vs Empirical Match	0.758	0.594	0.164
T-test	0.002***	0.01***	0.029**

Model Setup: Agents and Environment

Capital Owners (Rigs): Type $y \in Y = \{low, mid, high\}$

- Efficiency categorized by maximum drilling depth
- Available capital: n_{yt} rigs of type y at time t

Projects (Wells): Characteristics $x = (x_{complexity}, x_{quantity}, \tau)$

- *x*_{complexity}: complexity index (Mechanical Risk Index)
- $x_{quantity}$: expected hydrocarbon value
- τ : contract duration in months
- $K_t = k_0 + k_1 g_t$ potential projects drawn each period

State Space:
$$s_t = [g_t, n_{low,t}, n_{mid,t}, n_{high,t}]$$

- State evolution: $s_t = R_0 + R_1 s_{t-1} + \varepsilon_t$
- Only gas price g_t is stochastic

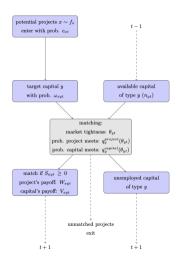
Timing and Decision Sequence

Within Each Period (Monthly):

(1) **Contract Extensions:** Existing matches extend with probability

$$\eta_{xy,t+\tau} = \eta \cdot \mathbf{1}[S_{xy,t+\tau} \geqslant 0]$$

(2) Entry Decision: Each potential project enters with probability


$$e_{xt} = \frac{\exp\left[\sum_{k \in Y} \omega_{xkt} \pi_{xkt} - c\right]}{1 + \exp\left[\sum_{k \in Y} \omega_{xkt} \pi_{xkt} - c\right]}$$

(3) Partially Directed Search: Projects target capital submarkets with probability

$$\omega_{xyt} = \frac{n_{yt} \exp[\gamma_0(\pi_{xyt} - \gamma_1 \mathbf{1}[x \notin A_{yt}])]}{\sum_{k \in Y} n_{kt} \exp[\gamma_0(\pi_{xkt} - \gamma_1 \mathbf{1}[x \notin A_{kt}])]}$$

(4) **Matching:** Meet with probabilities $q_y^{capital}(\theta_{yt})$, $q_y^{project}(\theta_{yt})$

Timing and Decision Sequence

Value Functions: Project Owners

Project Owner's Value from Matching:

$$W_{xyt} = \sum_{k=0}^{\tau-1} \beta^k [v_{xyt,k} - p_{xyt}] + \beta^{\tau} \mathbb{E}_t [\eta_{xy,t+\tau} W_{xy,t+\tau}]$$

Where Per-Period Match Value:

$$v_{xyt,k} = m_{0,y} + m_{1,y} \cdot x_{complexity} + m_2 \cdot \mathbb{E}_t[g_{t+k}] \cdot x_{quantity}$$

Key Parameters:

- $m_{0,y}$: Base match value for rig type y
- $m_{1,y}$: Complementarity parameter (sorting incentive)
- m_2 : Weight on expected hydrocarbon value

Supermodularity Condition for Sorting: $m_{1,high} > m_{1,mid} > m_{1,low}$

Value Functions: Capital Owners

Capital Owner's Value from Matching:

$$V_{xyt} = \sum_{k=0}^{\tau-1} \beta^k p_{xyt} + \beta^{\tau} \mathbb{E}_t [\eta_{xy,t+\tau} V_{xy,t+\tau} + (1 - \eta_{xy,t+\tau}) U_{y,t+\tau}]$$

Capital Owner's Value of Searching Again:

$$U_{yt} = \int_z \max\{V_{zyt}, eta \mathbb{E}_t U_{y,t+1}\} h_{zyt} dz + h_{\varnothing yt} eta \mathbb{E}_t U_{y,t+1}$$

Where Contact Probabilities:

$$h_{xyt} = q_y^{capital}(\theta_{yt}) \cdot rac{\omega_{xyt} e_{xt} f_x}{\int_z \omega_{zyt} e_{zt} f_z dz}$$

$$h_{\varnothing yt} = 1 - q_y^{capital}(\theta_{yt})$$

(2)

(1)

Matching Technology and Market Tightness

Market Tightness:

$$\theta_{yt} = \frac{n_{yt}}{K_t \cdot \int \omega_{xyt} e_{xt} f_x dx}$$

Meeting Probability Functions:

$$q_y^{capital}(\theta_{yt}) = \min\left\{1 - \exp\left(-\frac{a_y}{\theta_{yt}}\right), \frac{1}{\theta_{yt}}\right\}$$
 (3)

$$q_y^{project}(\theta_{yt}) = \min \left\{ \theta_{yt} \left(1 - \exp \left(-\frac{a_y}{\theta_{yt}} \right) \right), 1 \right\}$$

Parameter *a_y*: Controls matching efficiency for rig type *y* **Functional Form Properties:**

- As $\theta_{yt} \to 0$: $q_y^{capital} \to 1$, $q_y^{project} \to 0$ (thick capital market)
- As $\theta_{yt} \to \infty$: $q_y^{capital} \to 0$, $q_y^{project} \to 1$ (thin capital market)

(4)

Equilibrium: Nash Bargaining and Acceptance

Nash Bargaining Solution:

$$p_{xyt} = \arg \max_{p_{xyt}} [V_{xyt} - \beta \mathbb{E}_t U_{y,t+1}]^{\delta} [W_{xyt}]^{1-\delta}$$

Total Surplus:

$$S_{xyt} = W_{xyt} + V_{xyt} - \beta \mathbb{E}_t U_{y,t+1}$$

Acceptance Set:

$$A_{yt} = \{x : S_{xyt} \geqslant 0\}$$

Rearranged Price Equation (for identification):

$$p_{xyt} = (1 - \delta)z_{xyt} + \delta m_{0,y} + \delta m_{1,y}x_{complexity} + \delta \left[\frac{\sum_{k=0}^{\tau-1} \beta^k \mathbb{E}_t[g_{t+k}]}{\sum_{k=0}^{\tau-1} \beta^k}\right] x_{quantity}$$

where z_{xyt} captures outside option effects

Identification Challenge and Strategy

Central Challenge: Separate sorting effect from compositional changes in demand

- Observed stronger sorting in booms could reflect:
 - (1) **Sorting Effect:** Agents become more selective (behavioral)
 - (2) Composition Effect: Different types of projects enter in booms

Key Innovation - Price-Based Identification:

$$p_{xyt} = (1 - \delta)z_{xyt} + \delta m_{0,y} + \delta m_{1,y}x_{complexity} + \delta \left[\frac{\sum_{k=0}^{\tau-1} \beta^k \mathbb{E}_t[g_{t+k}]}{\sum_{k=0}^{\tau-1} \beta^k}\right] x_{quantity}$$

Auxiliary Regression:

$$p_{xyt} - (1 - \delta)z_{xyt} = \hat{\beta}_{0,y} + \hat{\beta}_{1,y}x_{complexity} + \hat{\beta}_{2}g_{t}x_{quantity} + \varepsilon_{xyt}$$

This separates match values from outside option values, enabling identification of true complementarities

Two-Step Estimation Procedure

Step 1: State Transitions and Value Functions

- Estimate state transition parameters $(R_0, R_1, \sigma_{\varepsilon})$ via Maximum Likelihood
- Construct search value functions U_{yt} non-parametrically using forward simulation:

$$U_{yt} = \mathbb{E}\left[\sum_{s=1}^{\infty} \beta^{s-1} \text{Flow Value}_{y,t+s}\right]$$

• Calibrate bargaining parameter $\delta = 0.37$ from industry operating margins

Step 2: Simulated Method of Moments

- Estimate remaining parameters $\Theta = \{m_{0,y}, m_{1,y}, m_2, \gamma_0, \gamma_1, a_y, \eta, k_0, k_1, f_x\}$
- Minimize: $\min_{\Theta} [\mathbf{m}_{data} \mathbf{m}_{model}(\Theta)]' \mathbf{W} [\mathbf{m}_{data} \mathbf{m}_{model}(\Theta)]$
- Optimal weighting matrix W from efficient GMM

Moment Conditions and Identification Sources

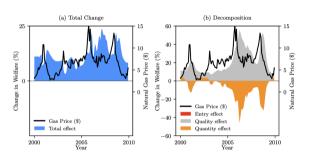
Match Value Parameters $(m_{0,y}, m_{1,y}, m_2)$ - 7 parameters:

- Source: Price regression coefficients (4 moments)
- Variation: Cross-sectional complexity, time-series gas prices

Targeting Parameters (γ_0, γ_1) - 2 parameters:

- *Source*: Sorting patterns by rig type in booms/busts (6 moments)
- Variation: Cyclical changes in match patterns

Meeting Technology (a_y) - 3 parameters:


- Source: Mean utilization rates by rig type (3 moments)
- Variation: Cross-sectional differences in capacity utilization

Demand Parameters (k_0, k_1, f_x) - 8 parameters:

- Source: Utilization variance, cyclicality, match distribution (8 moments)
- Variation: Time-series correlation with gas prices

Counterfactual 1: Quantifying the Sorting Effect

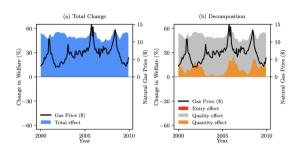
Counterfactual 1: No sorting (agents cannot be selective; $\gamma_0 = 0$, wider acceptance sets).

(c) Summary of changes

	Boom	Bust	Average
Quality Effect	15.4%	4.8%	20.2%
Quantity Effect	-8.1%	-0.1%	-8.2%
Entry Effect	0.0%	0.0%	0.0%
Total	7.3%	4.7%	12.0%

Result:

- The sorting effect increases total welfare by **12.0**%.
- This is approximately \$536 million


Decomposition:

- Quality Effect: +20.2%
- Quantity Effect: -8.2%

The quality effect dominates

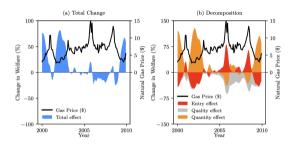
Counterfactual 2: An Intermediary

Counterfactual 2: Introduce a "greedy" intermediary that improves the search technology, assigning wells to the statically optimal rig submarket.

	Boom Bust		Average
Quality Effect	23.2%	17.9%	41.1%
Quantity Effect	5.2%	4.7%	9.9%
Entry Effect	0.0%	0.0%	0.0%
Total	28.4%	22.6%	51.0%

Result:

 The intermediary increases welfare by 51.0% over the baseline.


Decomposition:

- Quality Effect: +41.1%
- Quantity Effect: +9.9%

Substantial search frictions remain.

Counterfactual 3: Demand Smoothing

Counterfactual 3: Gas price at its long-run average.

	Boom	Bust	Average	
Quality Effect	-10.2%	-2.4%	-12.6%	
Quantity Effect	-2.4%	30.5%	28.1%	
Entry Effect	10.4%	-11.0%	-0.6%	
Total	-2.1%	17.0%	14.9%	

Result:

 A surprisingly modest welfare gain of 14.9%.

Why?

- It shifts drilling from booms to busts.
- But it **blunts the sorting effect**.

Conclusion

- A dynamic search model with two-sided heterogeneity
 - Provides a detailed picture of the "inner workings" of capital reallocation
- Novel evidence of pro-cyclical sorting in a major decentralized capital market
 - The sorting effect is a quantitatively important mechanism, increasing welfare by 12%.
 - Significant search frictions remain; an intermediary could boost welfare by a further 51%.
 - Demand smoothing policies may be less effective than commonly thought because they eliminate the pro-cyclical efficiency gains from better matching.

References I

Vreugdenhil, N. (2025). Booms, busts, and mismatch in capital markets: Evidence from the offshore oil and gas industry. *Journal of Political Economy, Forthcoming*.