# Welfare and redistribution in residential electricity markets with solar power

Feger et al. (2022), RES.

Environmental Reading Group session 32

May 31, 2024



#### **Motivation**

- Increasing adoption of residential solar panels Challenge regulators: network financing and vertical equity.
  - Grid costs are paid by consumption-based marginal retail price.
  - Adopters are usually wealthier households. Regressive residtrivutive effect in green energy incentives 

    subsidy received by richer households.
- Question: Should grid financing be based on consumption or fixed? Rich households share the same burden as poorer households. But it may reduce the incentive to adopt solar panels, and it might increase grid expenditure relatively more for low-consumption households.



## Results Preview

Marginal cost is more cost-efficient and progressive to incentivize PV adoption as rich households consume more and are less price sensitive. But it also causes a larger welfare loss.



#### Remuneration

000

- 2008-2013: subsidized feed-in tariff
- 2014 onwards: Self-consumption and feed-in tariff

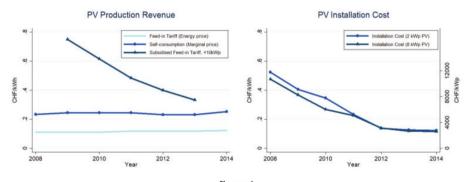



FIGURE 1

Welfare and redistribution in residential electricity markets with solar power



#### Data

- 165,000 households in Canton of Bern, Switzerland (2008-2014)
- Variables:
  - Energy Companies: Energy consumption, expenditures, electricity price, solar panel installations;
  - Admin Data: income, wealth, building characteristics;
  - Energy Advisory Platform: simulation for potential energy production and self-consumption.



#### Price Breakdown

TABLE 1 Annual energy prices, network tariffs, and taxes

|                          | BKW  |         | E    | WB      | ET   |         |
|--------------------------|------|---------|------|---------|------|---------|
|                          | Mean | Std Dev | Mean | Std Dev | Mean | Std Dev |
| Fixed fee (CHF/year)     | 139  | 27      | 82   | 47      | 105  | 20      |
| Marginal price (Rp./kWh) | 21   | 2.8     | 17.5 | 2.3     | 22.5 | 1.6     |
| Energy price             | 10.3 | 1.2     | 10   | 0.8     | 11.5 | .5      |
| Grid price               | 8.3  | 1.7     | 6.4  | 1.6     | 8.2  | 1.8     |
| Municipality tax         | 1.8  | 0.3     | 0.5  | 0.3     | 2.3  | 1.6     |
| KEV tariff               | 0.5  | 0.1     | 0.5  | 0.2     | 0.5  | 0.1     |

*Notes:* The table shows average annual prices and standard deviation in the sample. KEV Tariff is the surcharge used to promote renewable energy. Rp (Rappen) is one-hundredth of a Swiss franc (CHF). All prices include the value-added tax.



6 / 26

 Introduction
 Data
 Model
 Results
 Counterfactural Analysis

 ○○○
 ○○●○
 ○○○○○○
 ○○○○○○
 ○○○○○○

## Households Quintiles

Table A.1: ENERGY AND HOUSEHOLD CHARACTERISTICS BY INCOME QUINTILE

|                                | 1 <sup>st</sup> | 2 <sup>nd</sup> | $3^{rd}$ | 4 <sup>th</sup> | 5 <sup>th</sup> |
|--------------------------------|-----------------|-----------------|----------|-----------------|-----------------|
| Variables                      | <36k            | 36k-54k         | 54k-72k  | 72k-99k         | >99k            |
| Energy Consumption (kWh)       |                 |                 |          |                 |                 |
| Mean                           | 2,971           | 3,367           | 3,959    | 4,606           | 5,777           |
| Standard Deviation             | 2,984           | 3,364           | 3,539    | 3,769           | 4,501           |
| Energy Expenditure (CHF)       |                 |                 |          |                 |                 |
| Mean                           | 696             | 777             | 895      | 1,023           | 1,248           |
| Standard Deviation             | 557             | 620             | 645      | 682             | 829             |
| Energy Price Expenditure (CHF) | 296             | 333             | 391      | 455             | 569             |
| Grid Expenditure (CHF)         | 346             | 380             | 428      | 480             | 570             |
| Share of Fixed Fee (%)         | 39.8            | 38.1            | 34.3     | 31.2            | 27.4            |
| Income Share Energy (%)        | 3.9             | 2               | 1.7      | 1.4             | 1.1             |
| Home Ownership (%)             | 17              | 29              | 40       | 54              | 72              |
| Married (%)                    | 16              | 31              | 53       | 70              | 80              |
| Age HH Head                    | 54.9            | 54.1            | 54.3     | 54.4            | 54.9            |
| Householdsize                  | 1.3             | 1.6             | 2        | 2.3             | 2.6             |
| PV Installation (%)            | .08             | .17             | .33      | .7              | 1.61            |
| Heating System (%)             |                 |                 |          |                 |                 |
| Electric                       | 4               | 4               | 4        | 4               | 4               |
| Heat Pump                      | 2               | 3               | 5        | 7               | 9               |
| Oil/Gas/Coal                   | 94              | 93              | 91       | 89              | 87              |

# Simulated Energy Production

TABLE 5
Simulated annual capacity and energy production

|                              | N Obs  | Mean  | Std Dev | 5th Perc | Median | 95th Perc |
|------------------------------|--------|-------|---------|----------|--------|-----------|
| PV production capacity (kWp) | 40,394 | 9.5   | 4.7     | 4.7      | 8.4    | 18.9      |
| PV energy production (kWh)   | 40,394 | 9,687 | 5,586   | 4,708    | 8,355  | 19,116    |
| Self-consumption             |        |       |         |          |        |           |
| % of production              | 40,381 | 14.8  | 10.1    | 5.1      | 12.4   | 33.8      |
| % of consumption             | 40,394 | 20.3  | 8.1     | 11.8     | 18.6   | 33.4      |
| in kWh                       | 40,394 | 1,223 | 876     | 592      | 990    | 2,626     |

Notes: The variables show simulated capacity and potential energy production for homeowners of single or double apartment buildings assigned to BKW. This is the subset of households that, in our PV adoption model, will be allowed to choose whether to install a solar panel or not. Values are simulated based on roof size, appliances, and geographic location. The number of observations equals the number of households. kWp means kilowatt peak, which is the capacity of a solar panel under standard test conditions.

## Assumptions

- Consumers respond to 1-year lagged average electricity price.
- Subsidized feed-in tariff and solar panel prices both decrease over time.
- Solar adoption does not affect electricity price and consumption level.



# Setup

- household i = 1,...,N decides every year  $t = 1,...\infty$  electricity consumption  $C_{it}$ , other good  $Q_{it}$  and solar panel adoption  $PV_{it} = \{0,1\}$ .
- Energy demand function:

$$C_{it} = P_{ut}^{\beta_i} \cdot e^{\alpha + X_{it}' \omega + \nu_{it}} \tag{1}$$

 $P_{ut}$ : electricity price,  $X_{it}$ : household characteristics,  $v_{it}$ : idiosyncratic shock.



## Household's Problem I

Indirect utility without solar panel:

$$v_{it}(PV_{it} = 0) = \tilde{l}_{it} - F_{ut} - \frac{1}{\hat{\beta}_{i} + 1} P_{ut} C_{it}$$
 (2)

2 Indirect utility with solar panel:

$$v_{it}(PV_{it} = 1) = \tilde{I}_{it} - F_{ut} - \frac{1}{\hat{\beta}_{i} + 1} P_{ut} C_{it} + R_{it}$$
 (3)



#### Household's Problem II

$$R_{it}^{FT} = \sum_{s=t}^{t+24} \rho^{s-t} (1-\xi)^{s-t} \cdot \tau_{it} \cdot Y_i + \rho^{25} R_{t+25}^{SC}$$

$$R_{it}^{SC} = \sum_{s=t}^{\infty} \rho^{s-t} (1-\xi)^{s-t} \cdot Y_i \cdot [SC_i \cdot E[P_{ut}] + (1-SC_i) \cdot E[P_{ut}^e]]$$
(4)

 $E[P_{ut}]$ : average electricity price,  $E[P_{ut}^e]$ : average feed-in tariff price,  $SC_i$ : self-consumption rate (exogenous).



#### Household's Problem III

 $\bullet$   $F_{it}$ : solar panel installation cost:

$$F_{it} = (1 - S)(1 - T_i) \cdot kWp_i \cdot C_t^{kWp} \tag{5}$$

 $T_i$ : marginal income tax rate, S: subsidy rate, 30%.

Optimal stopping model subject to yearly budget constraint:

$$V_{i}(S_{it}) = \max_{PV_{it}} \{ \frac{\theta_{v}}{\theta_{v}} v_{it}(PV_{it}) + \varepsilon_{it}(PV_{it}) + PV_{it}(\theta_{v} V_{it} + \frac{\theta_{F_{i}}}{\theta_{F_{i}}} F_{it}) + (1 - PV_{it})\rho E[V_{i}(S_{it+1}|S_{it}]) \}$$
(6)

 $V_{it}$ : presented value of future utility,  $\varepsilon_{it}$ : type I extreme value shock. Parameter  $\theta_{V}$  and  $\theta_{F_{i}}$  are going to be estimated.

•  $S_{it} = \{R_{it}, F_{it}\}$ : state variable, follow AR(1) process.

## Household's Problem IV

on normalize  $v_{it}(PV_{it}=0)=\mu$ , consumption and adoption are independent. Then the probability of adoption is:

$$Pr(PV_{it} = 1|S_{it}) = \frac{exp[\theta_{v}R_{it} + \theta_{Fi}F_{it}]}{exp[\theta_{v}R_{it} + \theta_{Fi}F_{it}] + exp[\rho\int_{S_{it+1}} E[\mathcal{V}_{i}(S_{it+1}|S_{it})]\rho_{1}(S_{it+1}|S_{it})]}$$
(7)

 $p_1(S_{it+1}|S_{it})$  is the transition probability of state variable.



# Estimation Methodology

• Energy demand function:

$$\ln(C_{it}) = \alpha + \beta_i \ln(P_{ut-1}) + \alpha + X'_{it}\omega + \underbrace{\mu_t + \xi_b + \tilde{v}_{it}}_{v_{it}}$$
(8)

 $\mu_t$ : time fixed effect,  $\xi_b$ : border fixed effect.

• Adoption probability: Log-likelihood maximization:

$$L(\theta_{v}, \theta_{Fi}) = \sum_{i=1}^{N} \sum_{t=1}^{T} \{PV_{it} \ln(Pr(PV_{it} = 1|S_{it})) + [1 - PV_{it}] \ln(1 - Pr(PV_{it} = 1|S_{it}))\}$$
(9)



 Introduction
 Data
 Model
 Results
 Counterfactural Analysis

 ○○○
 ○○○
 ○○○
 ○○
 ○○○
 ○○○

# Demand Elasticity

TABLE 6 Energy price elasticities

| Variables             | (1)       | (2)       |
|-----------------------|-----------|-----------|
| Price                 | -0.166*** | -0.224*** |
|                       | (0.014)   | (0.030)   |
| Price interactions    |           |           |
| 2nd wealth quintile   | 0.063***  | 0.072***  |
| •                     | (0.003)   | (0.005)   |
| 3rd wealth quintile   | 0.092***  | 0.099***  |
| •                     | (0.003)   | (0.005)   |
| 4th wealth quintile   | 0.103***  | 0.129***  |
|                       | (0.003)   | (0.006)   |
| 5th wealth quintile   | 0.085***  | 0.115***  |
|                       | (0.003)   | (0.007)   |
| Double tariff BKW/EWB | 0.457***  | 0.433***  |
|                       | (0.004)   | (0.010)   |
| Double tariff ET      | 0.155***  | 0.267***  |
|                       | (0.005)   | (0.019)   |

IntroductionDataModelResultsCounterfactural Analysis○○○○○○○○○○○○○○○

## Transition Process

TABLE 7 AR(1) estimates

|                        | (1)                 | (2)                 | (3)                 |
|------------------------|---------------------|---------------------|---------------------|
| $\delta_{FT}$          | 0.873***<br>(0.000) |                     |                     |
| $\delta_{SC}$          | ,                   | 1.016***<br>(0.000) |                     |
| $\delta_{\mathcal{F}}$ |                     |                     | 0.774***<br>(0.000) |
| N Obs $R^2$            | 204,979<br>0.965    | 204,979<br>0.994    | 204,979<br>0.950    |
| $\hat{\sigma}$         | 0.390               | 0.039               | 0.444               |

 Introduction
 Data
 Model
 Results
 Counterfactural Analysis

 ○○○
 ○○○○
 ○○○○
 ○○
 ○○○

# Adoption Results

TABLE 8
PV adoption results

| Parameters              | (1)       | (2)       | (3)       |
|-------------------------|-----------|-----------|-----------|
| $\theta_{v}$            | 0.231***  | 0.213***  | 0.214***  |
|                         | (0.020)   | (0.019)   | (0.019)   |
| $\theta_{\mathcal{F}}$  | -0.452*** | -0.569*** | -0.702*** |
|                         | (0.020)   | (0.040)   | (0.058)   |
| Fixed cost interactions |           |           |           |
| 2nd wealth quintile     |           | 0.067     | 0.148     |
|                         |           | (0.094)   | (0.108)   |
| 3rd Wealth quintile     |           | 0.044     | 0.125     |
|                         |           | (0.068)   | (0.082)   |
| 4th wealth quintile     |           | 0.150***  | 0.251***  |
|                         |           | (0.048)   | (0.064)   |
| 5th wealth quintile     |           | 0.239***  | 0.357***  |
|                         |           | (0.049)   | (0.066)   |
| Year 2010               |           |           | -1.096*** |
|                         |           |           | (0.153)   |
| Mid-age household head  |           |           | 0.310***  |
|                         |           |           | (0.050)   |
| Rural area              |           |           | 0.210***  |
|                         |           |           | (0.053)   |
| N Obs                   | 204,979   | 204,979   | 204,979   |
| LR test statistic       | 263.9     | 351.6     | 506.0     |

 Introduction
 Data
 Model
 Results
 Counterfactural Analysis

 ○○○
 ○○○
 ○○○
 ○○○
 ●●●○○○○

# Regulator's Problem I

- constraints:
  - Solar Energy Target
  - Fixed Grid Investment Costs
- Stimulus:
  - Upfront cost subsidy
  - Self consumption
- Alternative policys:
  - Subsidy: additional source of financing
  - Marginal price increase: more incentive, additional grid revenue, lower consumption



 Introduction
 Data
 Model
 Results
 Counterfactural Analysis

 ○○○
 ○○○
 ○○○
 ○○
 ◆●●○○○○

# Regulator's Problem II

- Fixed price: lower incentive, fixed fee increases comparably more for low-consumption households.
- Network financing:

$$GE_{it}(P_{Gt}, F_t) = F_t + P_{Gt} \cdot [P_{\beta_i}^t e^{X_{it}'\omega} + v_{it} - SC_i \cdot Y_{it} \cdot Pr(PV_{it} = 1 | P_{Gt}, F_t, S)]$$

$$(10)$$

$$\sum_{i=1}^{N} GE_{it}(P_{Gt}, F_t) = GC_0 + \sum_{i=1}^{N} Pr(PV_{it} = 1 | P_{Gt}, F_t, S) \cdot [0.055(1 - SC_i)Y_{it} + SF_{it}]$$
(11)

 $GC_0$ : fixed grid investment cost,  $SF_{it}$ : solar panel subsidy. additional grid cost of CHF 0.055 per kWh for non-self-consumed electricity.



# Regulator's Problem III

Solar Energy Target:

$$\frac{\sum_{i} Y_{it} Pr(PV_{it} = 1 | P_{Gt}, F_t, S)}{\sum_{i} \hat{c}_{it} (PV_{it}, P_{Gt}, F_t)} \ge SET$$

$$(12)$$

 $\hat{c}_{it}$ : net consumption.



# Objective Function

Objective functions:

|         | No equity                                                  | Equity                                                                                               |
|---------|------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
| Cost    | $\min_{P_G, F, S} \sum_{i} \sum_{t=1}^{5} GE_{it}(P_G, F)$ | $\min_{P_G, F, S} \sum_{i} \frac{\left[\sum_{t=1}^{5} (GE_{it}(P_G, F) - GE_{i0})\right]^2}{I_{it}}$ |
| Welfare | $\max_{P_G, F, S} \sum_{i} \sum_{t=1}^{5} v_{it}(P_G, F)$  | $\min_{P_G, F, S} \sum_{i} \frac{\left[\sum_{t=1}^{5} (v_{it}(P_G, F) - v_{i0})\right]^2}{I_{it}}$   |

Constraints:

$$\begin{split} &\sum_{t=1}^{5} \sum_{i=1}^{N} GE_{it}(P_G, F) \\ &= \sum_{t=1}^{5} \left[ GC_0 + \sum_{i=1}^{N} \Pr(\mathcal{PV}_{it}^{\text{new}} = 1 | P_G, F, S) \left( 0.055(1 - \mathcal{SC}_i) \widetilde{Y}_{it} + S\mathcal{F}_{it} \right) \right] \\ &\frac{\sum_{i} Y_{i5} \Pr(\mathcal{PV}_{i5} = 1 | P_G, F, S)}{\sum_{i} \widehat{c}_{i5}(\mathcal{PV}_{i5}, P_G, F)} \ge SET \end{split}$$

(network financing)

(solar energy target),

(18)



IntroductionDataModelResultsCounterfactural Analysis○○○○○○○○○○○○○○○○○○●○○○

#### Counterfactual Results

TABLE 10 % change in marginal grid price, fee, subsidy, grid expenditure, welfare

|                             |               |                      |                | Solar ene      | rgy target |                           |        |                |
|-----------------------------|---------------|----------------------|----------------|----------------|------------|---------------------------|--------|----------------|
|                             |               | Status quo<br>(7.5%) |                |                |            | Swiss regulator<br>(9.0%) |        |                |
|                             | Cost          | Cost equity          | Welf           | Welf<br>equity | Cost       | Cost equity               | Welf   | Welf<br>equity |
| Instruments                 |               |                      |                |                |            |                           |        |                |
| % Grid price $(P_G)$ change | 25.8          | -4.4                 | -69.8          | -13.2          | 34.6       | -0.7                      | -30.8  | -10.7          |
| % Fixed fee (f) change      | -96.3         | 10.8                 | 257.3          | 42.7           | -98.5      | 27.0                      | 138.8  | 63.9           |
| % subsidy (s) as % $F_i$    | 20.8          | 29.0                 | 50.0           | 31.5           | 83.3       | 91.0                      | 98.3   | 93.5           |
| % Marginal price change     | 11.5          | -2.0                 | -31.2          | -5.9           | 15.4       | -0.3                      | -13.8  | -4.8           |
| PV adoption (%)             | 1.8           | 1.9                  | 2.0            | 1.9            | 2.4        | 2.4                       | 2.5    | 2.4            |
| Percentage change by income | quintile of g | grid expend          | iture $(GE_i)$ |                |            |                           |        |                |
| 1st quintile                | -15.5         | 4.2                  | 49.6           | 10.1           | -11.0      | 12.4                      | 33.2   | 19.3           |
| 2nd quintile                | -12.0         | 3.9                  | 40.9           | 8.7            | -7.2       | 11.7                      | 28.7   | 17.3           |
| 3rd quintile                | -7.1          | 3.5                  | 28.0           | 6.6            | -1.8       | 10.8                      | 22.1   | 14.5           |
| 4th quintile                | -2.9          | 3.1                  | 17.2           | 4.9            | 2.7        | 10.0                      | 16.6   | 12.2           |
| 5th quintile                | 1.8           | 2.6                  | 5.0            | 2.9            | 7.8        | 9.0                       | 10.3   | 9.4            |
| Percentage change by PV own | ership of gr  | id expendit          | ure $(GE_i)$   |                |            |                           |        |                |
| Non-PV HH                   | 2.4           | 2.9                  | 4.4            | 3.1            | 8.5        | 9.4                       | 10.3   | 9.7            |
| PV HH                       | -19.5         | -13.7                | -0.8           | -12.0          | -14.9      | -7.9                      | -1.7   | -5.8           |
| Agg. welfare change (M CHF) | -12.16        | -11.60               | -11.02         | -11.46         | -14.76     | -14.21                    | -13.93 | -14.10         |
| Grid integr. cost (M CHF)   | 2.24          | 2.34                 | 2.62           | 2.37           | 3.29       | 3.44                      | 3.59   | 3.49           |
| Subsidy cost (CHF per kWh)  | 0.09          | 0.13                 | 0.24           | 0.15           | 0.45       | 0.50                      | 0.55   | 0.51           |

#### Distributional Effects

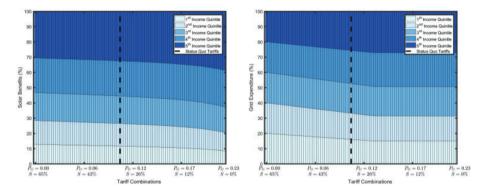



FIGURE 3
Distributional impacts of different tariff designs (7.5% solar energy target)



#### Conclusion

- Because of lower price elasticity of rich households, marginal price increase is the most cost-efficient and progressive way to incentivize solar panel adoption, but high welfare loss.
- High fixed cost and high subsidy is the most expensive and regressive strategy, but achieves least welfare loss.
- Welfare/Equity objective gives an intermediate solution.
- Cost/Equity target has a slightly higher welfare loss, but lower costs and distribute grid expenditure more equally across households in different income quintiles.



 Introduction
 Data
 Model
 Results
 Counterfactural Analysis

 ○○○
 ○○○
 ○○○
 ○○○
 ○○○

## References

Feger, F., Pavanini, N., & Radulescu, D. (2022). Welfare and redistribution in residential electricity markets with solar power. The Review of Economic Studies, 89(6), 3267-3302.

