Welfare consequences of sustainable finance

Hong et al. (2023)

Hulai Zhang

April 19, 2024

Env.Climate

Introduction

- This paper studies the welfare consequences of investment mandates in sustainable finance
 - Mandate raises the cost of capital for unsustainable, incentivizing them to reform
 - Mitigation investment reduces the risk of climate change, benefiting production and households
 - Mitigation investment reduces consumption, which is costly to households
 - We do not know whether mandate helps or hurts welfare
- This paper theoretically studies the welfare effects of sustainable finance

Model

- Climate state: $S \in \{G, B\}$ with transition $Pr(B|G) = \zeta_t$ and Pr(B|B) = 1
 - $\zeta_t = \zeta(n_t; \mathcal{G})$ decreasing and convex in n_t

Firm side:

- ullet Firm has two types of capital: productive K_t and decarbonization N_t
 - Path of K_t : $\frac{dK_t}{K_{t-}} = \phi(\frac{I_{t-}}{K_{t-}})dt + \sigma d\mathcal{W}_t (1-Z)d\mathcal{J}_t$
 - Path of N_t : $\frac{dN_t}{N_{t-}} = \omega(\frac{X_{t-}}{N_{t-}})dt + \sigma d\mathcal{W}_t (1-Z)d\mathcal{J}_t$
 - Disaster rates $\lambda_t^{\mathcal{G}} = \lambda(n_t; \mathcal{G})$ and $\lambda_t^{\mathcal{B}} = \lambda(n_t; \mathcal{B})$ decreasing and convex in n_t
- Firm's production function: $Y_t = AK_t$
- ullet Firm generates and removes carbon emissions by K_t and N_t
 - emission generation: $E_t = eK_t$
 - emission removal: $R_t = \varrho N_t$
- Decarbonization-productive capital ratio: $n_t = \frac{N_t}{K_t}$
 - n_t evolves as $\frac{dn_t}{n_{t-}} = \left[\omega\left(\frac{X_{t-}}{N_{t-}}\right) \phi\left(\frac{I_{t-}}{K_{t-}}\right)\right]dt$
- Sustainable firm: $X_t \ge m_t K_t$

Model

Household side:

- Investment mandate: $Q_t^S \ge \alpha Q_t = \alpha (Q_t^S + Q_t^U)$
- ullet Epstein-Zin utility: $V_t = \mathbb{E}_t \left[\int_t^\infty f(\mathit{C_s}, \mathit{V_s}) ds \right]$

Market clearing conditions

- Household demand for S portfolio equals the total supply by firms choosing to be sustainable
- Household demand for U portfolio equals the total supply by firms choosing to be unsustainable
- Net supply of risk-free asset is zero
- $\bullet \ \ Y_t = I_t + X_t + C_t$

3

Market equilibrium without mandate

- Under-provision of decarbonization capital.
 - Firm i pays for the investment cost of X_t
 - All firms enjoy the benefits of climate risk reduction
 - \bullet Externality makes X_t under-provided

Market equilibrium with mandate, given m(n; S) and α :

All firms have the same Tobin's Q

$$q^{\mathcal{S}}(n;\mathcal{S})=q^{\mathcal{U}}(n;\mathcal{S})$$

• All firms have the same investment-capital ratio

$$i^{S}(n;S)=i^{U}(n;S)$$

• The investment-q equation holds for all firms:

$$q(n;S) = \frac{1}{\phi'(i(n;S))}$$

Cash flow wedge equals mitigation spending

$$cf^{S}(n;S) - cf^{U}(n;S) = m(n;S)$$

where $cf^{U}(n; S) = A - i(n; S)$

Market equilibrium with mandate, given m(n; S) and α :

• The required rate of return for sustainable firms lowers down

$$r^{U}(n;S) - r^{S}(n;S) = \frac{m(n;S)}{q(n;S)}$$

Aggregate consumption equals aggregate dividends

$$c(n; S) = cf(n; S) = A - i(n; S) - x(n; S)$$

m(n; S) can be endogenized. Steady state can be achieved for given α .

Market equilibrium with mandate when m(n; S) is endogenized, given α .

The FOCs for i(n; S) and x(n; S) are

$$\rho\left(\frac{A - \mathbf{i}(\mathbf{n}; \mathcal{S}) - \mathbf{x}(\mathbf{n}; \mathcal{S})}{b(\mathbf{n}; \mathcal{S})}\right)^{-\psi^{-1}} = \phi'(\mathbf{i}(\mathbf{n}; \mathcal{S}))b(\mathbf{n}; \mathcal{S})$$
(1)

$$\rho \left(\frac{A - \mathbf{i}(\mathbf{n}; \mathcal{S}) - \mathbf{x}(\mathbf{n}; \mathcal{S})}{b(\mathbf{n}; \mathcal{S})} \right)^{-\psi^{-1}} = \omega'(\mathbf{x}(\mathbf{n}; \mathcal{S})/\mathbf{n})b'(\mathbf{n}; \mathcal{S})$$
(2)

where $b(n; S) = u(n; S) \times q(n; S)$ is the welfare measure.

7

Fist-Best Solution

When the planner can choose (C, I, X) to maximize agents' welfare, the FOCs for i(n; S) and x(n; S) are

$$\rho \left(\frac{A - \mathbf{i}(\mathbf{n}; \mathcal{S}) - \mathbf{x}(\mathbf{n}; \mathcal{S})}{b(\mathbf{n}; \mathcal{S})} \right)^{-\psi^{-1}} + \phi'(\mathbf{i}(\mathbf{n}; \mathcal{S})) \mathbf{n} b'(\mathbf{n}; \mathcal{S}) = \phi'(\mathbf{i}(\mathbf{n}; \mathcal{S})) b(\mathbf{n}; \mathcal{S})$$

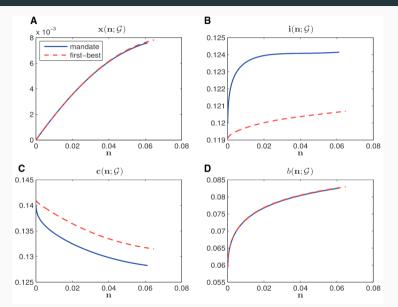
$$\rho \left(\frac{A - \mathbf{i}(\mathbf{n}; \mathcal{S}) - \mathbf{x}(\mathbf{n}; \mathcal{S})}{b(\mathbf{n}; \mathcal{S})} \right)^{-\psi^{-1}} = \omega'(\mathbf{x}(\mathbf{n}; \mathcal{S}) / \mathbf{n}) b'(\mathbf{n}; \mathcal{S})$$
(4)

where $b(n; S) = u(n; S) \times q(n; S)$ is the welfare measure.

Welfare-Maximizing Mandate vs. First-Best

Welfare-Maximizing Mandate does **NOT** attain the first-best.

Why over-investment of i(n; S)?

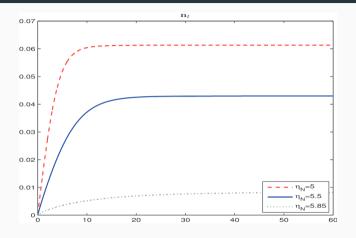

- Increasing I has two effects in planner's problem
 - 1. direct effect of reducing consumption
 - 2. indirect effect of reducing long-term decarbonization capital ratio n = N/K
- Investment I is costlier in the planner's problem due to the indirect effect
- \Rightarrow Over-investment in I in the welfare-maximizing mandate.

To achieved the first-best, an additional tax on I is needed.

Calibration

Parameters	Symbol	Value
Elasticity of intertemporal substitution Time rate of preference	ψ	1.5 4.2%
Coefficient of relative risk aversion	γ	8
Productivity for <i>K</i> Adjustment cost parameter for <i>K</i> Adjustment cost parameter for N Diffusion volatility for N and <i>K</i> Depreciation rates for N and <i>K</i>	$A \\ \eta_{K} \\ \eta_{N} \\ \sigma \\ \delta_{K} = \delta_{N}$	26% 5 5 9% 6%
Jump arrival baseline parameter from state \mathcal{G} to \mathcal{B} Jump arrival sensitivity parameter from state \mathcal{G} to \mathcal{B}	ζ ₀ ζ ₁	0.02 0.1
Power-law exponent Jump arrival baseline parameter with $\mathbf{n} = 0$ in state \mathcal{G} Jump arrival baseline parameter with $\mathbf{n} = 0$ in state \mathcal{B} Mitigation technology parameter	${}^{eta}_{\lambda_0^{\mathcal{G}}}_{\lambda_0^{\mathcal{B}}}_{\lambda_1^{\mathcal{B}}}$	39 0.05 2 0.3

Laissez-faire vs. Welfare-Maximizing Mandate vs. First-Best


Laissez-faire vs. Welfare-Maximizing Mandate vs. First-Best

		Laissez-faire	Mandate	First-best
Scaled mitigation spending	x ^{SS}	0	0.76%	0.78%
Scaled decarbonization stock	\mathbf{n}^{SS}	0	6.13%	6.48%
Scaled aggregate investment	\mathbf{i}^{SS}	11.83%	12.41%	12.07%
Average Tobin's q	\mathbf{q}^{ss}	2.45	2.64	2.52
Scaled aggregate consumption	c ^{s s}	14.17%	12.82%	13.15%
Expected GDP growth rate	\mathbf{g}^{ss}	2.04%	2.44%	2.30%
(Real) risk-free rate	$r^{f,ss}$	1.10%	0.73%	0.91%
Stock market risk premium	rp^{SS}	6.73%	6.58%	6.60%
Aggregate welfare measure	b^{ss}	0.0542	0.0826	0.0830
Time from $\mathbf{n} = 0$ to $0.99\mathbf{n}^{ss}$ in \mathcal{G}		0	10.9	10.0

The steady-state value of **n** in state \mathcal{G} is $\mathbf{n}^{ss} = 0.0613$.

Welfare-maximizing mandate alone well approximates the first-best outcomes.

Transition to Steady State

Optimal transition path is highly sensitive to the relative adjustment costs of decarbonization to productive capital.

Conclusion

- The required return for sustainable firms is lower than that for unsustainable firms
- Welfare-maximizing mandate well approximates the first-best outcomes quantitatively
 - Mandate makes over-investment in productive capital and under-consumption
 - An investment tax makes first-best outcomes achievable
- Transition path is highly sensitive to the adjustment costs of decarbonization capital

References

Hong, H., N. Wang, and J. Yang (2023). Welfare consequences of sustainable finance. The Review of Financial Studies 36(12), 4864-4918.