Results

Subsidies and time discounting in new technology adoption: Evidence from solar photovoltaic systems.

De Groote & Verboven (2019), AER

Environmental Reading Group session 20

Feb 5, 2024

Research Question

- Compare two subsidy program to incentivize residential solar PV installation:
 - one-off investment cost subsidy (US) v.s. future production subsidy up tp 20 years (EU)
- Why important?
 - Public expenditure savings.
 - Households's welfare (as public cost will be transmitted to consumers).
 - Effect of subsidy policy (whether it motivates green technology adoption as wished)

Background

- This paper uses data from Green Current Certificate Program (GCC), almost through subsidies on future electricity production, running in Belgium from 2006-2012.
 - Upfront investment subsidy (10%).
 - Tax credit (40%) and tax cut (VAT21%6%).
 - GCC subsidy, pay fixed price to power generation.
 - savings on your own electricity purchase.
- The purpose of this generous program is to motivate household to install rooftop solar PV.

Datasets

Household-level data in Flanders of Belgium from May 2009 to December 2012 (44 months):

- Time of adoption.
- Location.
- Types of solar PV: 2kw,4kw,6kw,8kw,10kw.
- Household characteristics (9182 local markets and 295 households per).

Dynamic Choice Model

- In period t, household i may choose $j \in \{0, 1, 2, ... J\}$
 - i = 0: no installment.
 - j = 1, ..., J: PV with different capacities. selection means termination.
- In period t, household i obtains i.i.d. random taste shock $\varepsilon_{i,j,t}$, following type I extreme value distribution.
- Condition value of alternative j in period t is:

$$v_{i,j,t} = \delta_{j,t} + \underbrace{\mu_{i,j,t}}_{heterogenity} \tag{1}$$

- Objective Function: $\max_{i} v_{i,j,t} + \varepsilon_{i,j,t}$.
- j > 0. Decomposition of $v_{i,j,t}$ (first assume no heterogeneity $\mu_{i,j,t} = 0$):

$$v_{i,j,t} = \delta_{j,t} = x_{j,t}\gamma - \alpha p_{j,t} + \xi_{j,t}$$
 (2)

 $x_{j,t}$: fixed effect of alternative j, $p_{j,t}$: price, $\xi_{j,t}$: unobserved quality.

Decomposition of price $p_{i,t}$,

$$p_{j,t} \equiv p_{j,t}^{IVV}(\beta) - \frac{1 - (\beta^G)^{R_t^G}}{1 - \beta^G} p_{j,t}^{GCC} - \frac{1 - (\beta^e)^{R^E}}{1 - \beta^E} p_{j,t}^{EL}$$
(3)

$$egin{align}
ho_{j,t}^{IVV}(eta) &=
ho_{j,t}^{GROSS} - \sum_{ au=1}^4 eta^{12 au} taxcut_{j,t}^ au \ eta^G &= (1-\lambda)(1-\pi)eta \ eta^E &= (1-\lambda)(1+ heta)eta \ \end{pmatrix}$$

 β monthly discount factor; λ depreciate rate; θ real electricity price; π inflation rate.

$$j = 0$$
.

$$v_{i,o,t} = u_{0,t} + \beta E_t$$
 Real Option of Waiting (4)

as $\varepsilon_{i,i,t}$ follows type I extreme value distribution,

$$\bar{V}_{t+1} = 0.577 + \ln \sum_{j=0}^{J} exp(\delta_{j,t+1})$$
 (5)

Choice Probability = Market Share

$$S_{j,t} = s_{j,t}(\delta) = \frac{exp(\delta_{j,t})}{\sum_{j=0}^{J} exp(\delta_{j,t})}$$
(6)

Two tricks

• No assumption of household's expectation. Rewrite expected value as true value minus a bias.

$$E_t \bar{V}_{t+1} = \bar{V}_{t+1} - \eta_t \tag{7}$$

② Berry Approach: market share inversion. For j=1,...,J

$$\ln(S_{j,t}/S_{0,t}) = \delta_{j,t} - \delta_{0,t}$$

$$= (x_{j,t} - \beta x_{1,t+1})\gamma - \alpha(p_{j,t} - \beta p_{1,t+1}) + \beta \ln S_{1,t+1} + e_{j,t}$$
(8)

where $e_{j,t} = \xi_{j,t} - \beta(\xi_{1,t+1}) - \eta_t$. The part in red is estimating equation.

Heterogeneity

$$\mu_{i,j,t} \neq 0 \Rightarrow \mu_{m,j,t} = w_{j,t} \wedge D_m$$
.

$$s_{j,t}(\delta) = \frac{exp(\delta_{j,t})}{\sum_{j=0}^{J} exp(\delta_{j,t})}$$
(9)

$$\Rightarrow s_{m,j,t}(\delta) = \frac{exp(v_{m,j,t})}{\sum_{j=0}^{J} exp(v_{m,j,t})}$$
(10)

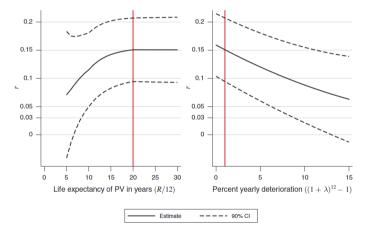
then to include micro-moments indicate local market heterogeneity.

 Introduction
 Data
 Model
 Results
 Conclusion

 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○

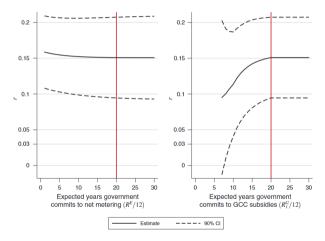
Regression Results (aggregate)

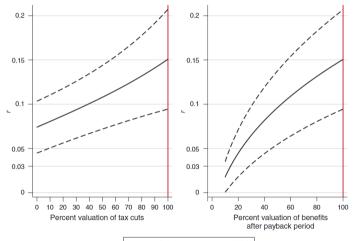
	Static (1)	Dynamic (2)	+ Micro-moments (3)	
Price sensitivity in 10^3 EUR $(-\alpha)$	-0.318 (0.074)	-0.470 (0.098)	-0.604 (0.100)	
Monthly discount factor (β) Annual interest rate in % ($r = \beta^{-12} - 1$)	0.9886 (0.0016) 14.82 (2.28)	0.9884 (0.0025) 15.09 (3.43)	0.9884 (0.0024) 15.00 (3.42)	



Regression Results (micro-moments)

Local market variables (A) Interactions with constant			Local market fixed effects included	
Interactions with capacity difference				
Pop. density (10 ⁴ inhab/m ²)			-0.689	(0.029)
Average house size			0.057	(0.009)
Average household size			0.124	(0.016)
Average house age (decades)			0.011	(0.002)
Median income (10 ⁴ EUR)			-0.066	(0.030)
Percentage homeowners			-0.075	(0.038)
Percentage higher education			-0.128	(0.041)
Percentage foreign			0.383	(0.040)
Interaction with price				
Median income (10 ⁴ EUR)			0.049	(0.007)
Observed macro-moments $(J \times T)$	220	220	220	
Observed macro-moments $(M \times J \times T)$	0	0	935,440	


Counterfactual (PV life expectancy)


14 / 19

Counterfactual (Commitment Period)

Counterfactual (Myopia)

Counterfactual (Upfront Investment)

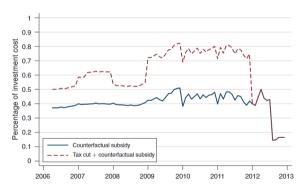


FIGURE 10. COUNTERFACTUAL INVESTMENT SUBSIDY

 Introduction
 Data
 Model
 Results
 Conclusion

 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○

Take-away

To incentivize household PV installment, production subsidy is much more expensive than upfront investment subsidy (almost **double the cost**) as consumers discount futures' revenue at a real discount rate (15%) much more than interest rate (around 3%).

 Introduction
 Data
 Model
 Results
 Conclusion

 ○0
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○

Reference

De Groote, O., & Verboven, F. (2019). Subsidies and time discounting in new technology adoption: Evidence from solar photovoltaic systems. American Economic Review, 109(6), 2137-2172.

