Are There Environmental Benefits from Driving Electric Vehicles? The importance of Local Factors

Holland et.al. (2015)

Environmental Reading Group session 1

July 7, 2023

Research Question

- Are electric vehicles more green than gasoline vehicles?
- What is the efficient policy for electric vehicle? Tax vs. Subsidy? National vs. local? Is full damage priced in current subsidy?

Calculation of Damages

Pollutants: CO_2 , SO_2 , NO_X , $PM_{2.5}$, VOC_s

- Emissions from Gasoline vehicles (gasoline conversion to pullutants) vs Electric Vehicle (electricity production)
- Emissions to damages in \$

Damage for Gas and Electric Vehicle

Damage for Gas and Electric Vehicle

- On average, Gasoline vehicle has a lower damage than electric ones;
- Great geographic variation.

Electric Vehicle damage

Global vs Local?

TABLE 2—SUMMARY STATISTICS OF DAMAGES AND ENVIRONMENTAL BENEFITS IN CENTS PER MILE FOR 2014 ELECTRIC VEHICLES AND SUBSTITUTE 2014 GASOLINE VEHICLES ACROSS COUNTIES

	Ele	Electric vehicle		Gasoline vehicle			Environmental benefits		
Vehicle	Mean	Min	Max	Mean	Min	Max	Mean	Min	Max
Panel A. Damages and envi	ronmental benefit	's							
Chevy Spark	2.28	0.59	4.17	1.69	0.95	4.30	-0.60	-3.15	3.08
Honda Fit	2.30	0.60	4.20	1.93	1.13	4.83	-0.37	-3.00	3.60
Fiat 500e	2.34	0.61	4.27	1.74	0.93	4.62	-0.60	-3.26	3.33
Nissan Leaf	2.38	0.62	4.35	1.23	0.74	3.53	-1.16	-3.52	2.22
Mitsubishi i-Miev	2.42	0.63	4.41	1.69	0.95	4.30	-0.73	-3.40	3.05
Smart fortwo	2.54	0.66	4.63	1.67	0.98	4.50	-0.87	-3.57	3.13
Ford Focus	2.59	0.67	4.72	1.86	1.03	4.32	-0.73	-3.63	3.16
Tesla S (60 kWh)	2.82	0.73	5.15	2.44	1.28	5.48	-0.38	-3.78	4.28
Tesla S (85 kWh)	3.06	0.80	5.59	2.67	1.48	5.74	-0.39	-4.02	4.55
Toyota Rav4	3.58	0.93	6.52	2.09	1.20	5.02	-1.49	-5.23	3.50
BYD e6	4.35	1.13	7.94	2.09	1.20	5.02	-2.27	-6.64	3.30
	En	Environmental benefits		Global environmental benefits			Local environmental benefits		
Vehicle	Mean	Min	Max	Mean	Min	Max	Mean	Min	Max
Panel B. Decomposition of	environmental be	nefits into	global and	local environ	mental be	nefits			
Chevy Spark	-0.60	-3.15	3.08	0.35	-0.14	0.72	-0.95	-3.01	2.37
Honda Fit	-0.37	-3.00	3.60	0.52	0.02	0.89	-0.89	-3.02	2.71
Fiat 500e	-0.60	-3.26	3,33	0.32	-0.19	0.71	-0.92	-3.08	2.63
Nissan Leaf	-1.16	-3.52	2.22	-0.09	-0.40	0.28	-1.07	-3.16	1.99
Nissan Leaf Mitsubishi i-Miev							-1.07 -1.04	-3.16 -3.20	2.36
Mitsubishi i-Miev	-1.16	-3.52	2.22	-0.09	-0.40	0.28			
Mitsubishi i-Miev Smart fortwo	$-1.16 \\ -0.73$	$-3.52 \\ -3.40$	2.22 3.05	-0.09 0.30	$-0.40 \\ -0.21$	0.28 0.69	-1.04	-3.20	2.36
	-1.16 -0.73 -0.87	-3.52 -3.40 -3.57	2.22 3.05 3.13	-0.09 0.30 0.18	-0.40 -0.21 -0.24	0.28 0.69 0.57	$-1.04 \\ -1.06$	$-3.20 \\ -3.34$	2.36 2.57
Mitsubishi i-Miev Smart fortwo Ford Focus	-1.16 -0.73 -0.87 -0.73	-3.52 -3.40 -3.57 -3.63	2.22 3.05 3.13 3.16	-0.09 0.30 0.18 0.44	-0.40 -0.21 -0.24 -0.21	0.28 0.69 0.57 0.89	-1.04 -1.06 -1.17	-3.20 -3.34 -3.43	2.36 2.57 2.28
Mitsubishi i-Miev Smart fortwo Ford Focus Tesla S (60 kWh)	-1.16 -0.73 -0.87 -0.73 -0.38	-3.52 -3.40 -3.57 -3.63 -3.78	2.22 3.05 3.13 3.16 4.28	-0.09 0.30 0.18 0.44 0.83	-0.40 -0.21 -0.24 -0.21 -0.07	0.28 0.69 0.57 0.89 1.36	-1.04 -1.06 -1.17 -1.21	-3.20 -3.34 -3.43 -3.72	2.36 2.57 2.28 2.93

Environmental Benefits of Electric Vehicle by State: 2014 Ford

Table 4—Environmental Benefits in Cents per Mile by State for a 2014 Ford Focus

	Environmental		Damage	Damage	
State	benefits per mile	VMT (percent)	per mile (gasoline)	per mile (electric)	Purchase subsidy
Highest benefit states					
California	1.86	11	2.55	0.69	\$2,78
Utah	0.73	1	1.77	1.04	\$1,08
Colorado	0.60	2	1.63	1.03	\$90
Arizona	0.59	2	1.62	1.02	\$88
Washington	0.58	2	1.59	1.02	\$86
Other high VMT states					
Texas	0.34	8	1.75	1.41	\$50
Florida	-0.70	7	1.80	2.49	-\$1,04
Georgia	-0.78	4	1.96	2.74	-\$1,16
New York	-0.91	5	2.19	3.10	-\$1.37
North Carolina	-1.07	4	1.67	2.74	-\$1.61
Virginia	-1.20	3	1.72	2.93	-\$1,80
Ilinois	-1.56	3	2.31	3.87	-\$2,34
Ohio	-1.76	4	1.89	3.65	-\$2,64
Pennsylvania	-1.78	3	1.86	3.64	-\$2,67
Michigan	-2.48	3	1.76	4.24	-\$3,72
Lowest benefit states					
South Dakota	-2.66	0	1.27	3.93	-\$3,99
Minnesota	-2.76	2	1.72	4.48	-\$4,14
Wisconsin	-2.79	2	1.59	4.37	-\$4,18
owa	-2.93	ī	1.37	4.30	-\$4,39
North Dakota	-3.31	0	1.27	4.58	-\$4,96
US average	-0.73	100	1.86	2.59	-\$1,09

Notes: The environmental benefits are the difference in damages between the gasoline-powered Ford Focus and the electric Ford Focus. Environmental benefits are weighted by gasoline-vehicle VMT within each state. The purchase subsidy assumes the while is driven 150,000 miles.

- Great variation;
- Negative environmental benefits of electric vehicle for US average.

Externality

TABLE 5—NATIVE DAMAGES IN CENTS PER MILE BY STATE AND COUNTY AND EXPORT PERCENTAGES

Vehicle	Damages	Mean	Med.	SD	Min	Max
Electric	All	2.59	2.74	1.18	0.67	4.72
	Non-GHG	1.70	1.86	1.02	0.16	3.50
	State Export percent	0.15 91	0.16 91	0.07	0.04	0.33 91
	County Export percent	0.02 99	0.02 99	0.01	0.00	0.06 98
Gasoline	All	1.86	1.76	0.59	1.03	4.32
	Non-GHG	0.53	0.36	0.52	0.01	2.92
	State Export percent	0.43 19	0.26 28	0.51	0.00	2.76 5
	County Export percent	0.23 57	0.10 72	0.37	0.00	2.03 30
Environmental benefits	All	-0.73	-1.01	1.39	-3.63	3.16
	Non-GHG	-1.17	-1.48	1.19	-3.43	2.28
	State	0.28	0.12	0.51	-0.32	2.46
	County	0.21	0.08	0.37	-0.06	2.00

- Larger externality of electric vehicle;
- Electric vehicle has lower native damage

Optimal Policy

Discret Choice Model:

$$egin{aligned} U_g &= V_g + arepsilon_g, U_e = V_e + arepsilon_e \ V_g &= \max_{x,g} x + f(g) \quad s.t.x + (p_g + t_g)g = I - p_\Psi \ V_e &= \max_{x,e} x + f(e) \quad s.t.x + (p_e + t_e)g = I - (p_\Omega - s) \end{aligned}$$

Hence, a consumer selects gasoline if

$$\pi = P(U_g > V_g) = \frac{exp(V_g/\mu)}{exp(V_g/\mu) + exp(V_e/\mu)}$$
(1)

and the expected utility becomes:

$$E(\max[U_e, U_g]) = \mu \ln(\exp(V_e/\mu)) + \exp(V_g/\mu))$$
 (2)

Model Cont.

consider each location as an independent agent, the welfare maximization function is:

$$\max W_i = \mu \ln(exp(V_e/\mu)) + exp(V_g/\mu)) + R_i - (\pi \delta_{gi} g_i + (1-\pi) \delta_{ei} e_i)$$
 (3)

Optimal regional subsidy:

$$s_i^* = \delta_{gi}g_i - \delta_{ei}e_i \tag{4}$$

Optimal uniform subsidy:

$$s = (\sum_{\alpha_i} \delta_{gi})g - (\sum_{\alpha_i} \delta_{ei})e \tag{5}$$

Deadweight Loss of Differentiated Policys

Table 6—Deadweight Losses of Differentiated VMT Taxes and Differentiated Purchase Subsidies

Panel A. Deadweight losses of differentiated VMT taxes	Gas and electric tax BAU EV share percent			Gas tax only BAU EV share percent			Electric tax only BAU EV share percent		
	1	2	5	1	2	5	1	2	5
County policies	0	0	0	201	391	905	1,709	1,717	1,740
State policies	89	92	102	289	482	1,005	1,712	1,721	1,752
Federal policies	162	191	277	343	542	1,095	1,736	1,770	1,874
County (native)	989	1,073	1,325						
State (native)	1,067	1,153	1,412						
Federal (native)	778	809	903						

	BAU EV share percent			
Panel B. Deadweight losses of differentiated electric vehicle purchase subsidies	1	2	5	
County policies	1,754	1,806	1,960	
State policies	1,758	1,815	1,983	
Federal policies (-\$1,095 subsidy)	1,783	1,864	2,107	
County policies (native damages)	1,788	1,874	2,134	
State policies (native damages)	1,792	1,881	2,152	
Federal policies (native damages)	1,785	1,868	2,188	
Current federal policy (\$7,500 subsidy)	2,581	3,459	6,079	
BAU federal policy (zero subsidy)	1,791	1,880	2,148	

Conclusion

- in US average level, Short term benefits of electric vehicle is negative; so taxes should be charged instead of subsidies if applying uniform policy.
- There is big difference among different states and counties. Region-specific tax can reduce deadweight loss.
- Externality is nonnegligible. Full damage instead of native damage should b considered. Otherwise, greater ddl from differentiated policies.

Reference

Holland, Stephen P., Erin T. Mansur, Nicholas Z. Muller, and Andrew J. Yates. 2016. "Are There Environmental Benefits from Driving Electric Vehicles? The Importance of Local Factors." American Economic Review, 106 (12): 3700-3729.