Xu and Kim (2022); Bartram et al. (2022) "Financial constraints and corporate environmental policies"

Hulai Zhang

Env.Climate

November 10, 2023

Outline

- Introduction
- 2 Xu and Kim (2022)
- **3** Bartram et al. (2022)
- 4 Conclusion

Introduction

Xu and Kim (2022): financial constraints \Rightarrow pollution \uparrow

- Optimal investment: marginal cost of abatement = marginal reduction in legal liabilities
- Under-investment: financial constraints increase abatement costs
 - ⇒ higher pollution

Bartram et al. (2022): financial constraints \Rightarrow reallocation of CO_2

- Regulatory costs vs. Reallocation costs
- Non-FC firms: Regulatory costs < Reallocation costs ⇒ Stay
- FC firms: Regulatory costs > Reallocation costs ⇒ Reallocate

Xu and Kim (2022)	

"Financial constraints and corporate environmental policies"

Data

- Pollution from EPA: establishment level, 1990–2014
- Investigation and legal enforcement from EPA's ECHO database: case level
- NETS: establishment info
- Other standard databases such as Compustat, CRSP, FHFA home price, SDC

Baseline results

Toxic Releases
$$_{i,c,t} = \alpha + \beta$$
 Financial Constraints $_{c,t-1} + \gamma$ Firm Controls $_{c,t-1} + \kappa$ Establishment Control $_{i,c,t} + FEs + \epsilon_{i,c,t}$ (1)

- Financial constraints: text base, not accounting based
 - Text FC from 10-K and bunch of indication words
 - HM Debt from MD&A section in 10-K of liquidity and financing source

	(1)	(2)	(3)	(4)	(5)	(6)
Text FC	0.221***	0.195***	0.160**			
	(0.073)	(0.070)	(0.065)			
HM debt				0.654*	0.631**	0.635**
				(0.360)	(0.312)	(0.303)

Identification: three experiments

Experiment 1: The 2004 American Jobs Creation Act (AJCA).

- Repatriation tax rate from 35% to 5.25%
- Windfall for multinational US firms if they repatriate foreign earnings
 - 132 firms repatriated foreign earnings in the sample

Some firms are likely to repatriate without AJCA, the residual likelihood of repatriation after AJCA is the windfall.

$$Pr(Repatriate)_{ct} = X_{ct}\beta + \varepsilon_{ct} \text{ for } t < 2004$$

Define $Residual_{ct} = Repatriate_{ct} - \widehat{Pr}(Repatriate)_{ct}$

Experiment 1: The 2004 AJCA

Toxic Releases
$$_{I,c,t} = \alpha + \beta_1$$
 Residual $_{c,t} \times FC_{c,t} + \beta_2 \Pr(\text{Repatriate })_{c,t} + \beta_3 \text{Residual }_{c,t} + \beta_4 FC_{c,t} + \gamma \text{ Controls } + FE + \epsilon_{i,t},$ (2)

	log(total release)			Dom inv
	(1)	(2)	(3)	(4)
Residual*FC	-0.544**	-0.731***	-0.500**	0.038***
	(0.234)	(0.243)	(0.222)	(0.015)
Pr(Repatriates)	-0.157	-0.128	-0.196	-0.027
•	(0.250)	(0.265)	(0.246)	(0.017)
Residual	0.150	0.209**	0.147	-0.017**
	(0.096)	(0.099)	(0.095)	(0.007)
FC	-0.091	-0.206**	-0.114	-0.018***
	(0.095)	(0.100)	(0.092)	(0.006)

• A σ increase in the repatriation shock (0.27) \Rightarrow 15% \downarrow in total toxic releases

Identification: three experiments

Experiment 2: Collateral value of real estate assets

- Local real estate price drives firm's value of real estate assets
- Higher value of real estate assets reduces external financing frictions

Omitted variables may drive home price and firm's pollution simultaneously

• IV from Home Price Index (HPI): supply elasticity × mortgage rate

	(1)	(2)	(3)
RE value	-0.046**		
	(0.018)		
RE value IV		-0.053***	
		(0.017)	
Total debt			-0.299**
			(0.137)

• A σ increase in RE value IV \Rightarrow 8% \downarrow in total toxic releases

Identification: three experiments

Experiment 3: Mutual fund flow-induced price

- Investors inflow/outflow to mutual funds force fund managers to scale stock positions
- Price rises for buying stocks and drops for selling stocks: price deviates from fundamentals
- Induced higher price alleviate external equity financing

	(1)	(2)	(3)	(4)
Inflow*Post	-0.167**	-0.177**		
	(0.082)	(0.086)		
SEO*Post			-0.213**	-0.163*
			(0.101)	(0.097)
Inflow	0.252**	0.244**		
	(0.099)	(0.099)		
SEO			0.676*	0.595*
			(0.380)	(0.312)
Post	0.089	0.101	0.078	0.088
	(0.082)	(0.082)	(0.072)	(0.066)

• Large inflow shocks \Rightarrow 18% \downarrow in total toxic releases

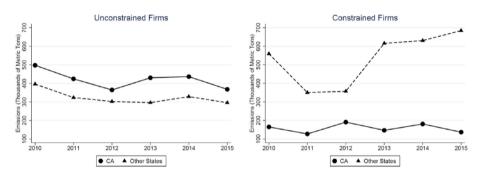
Mechanism

- Pollution induces higher legal liabilities
- Firms reduce pollution if they face higher investigation
 - ullet firms in nonattainment county \Rightarrow higher investigation
 - large polluters ⇒ higher investigation

	Pr(invest	rigation)% Pr(le		liab>0)%	log(legal_liab)	
	(1)	(2)	(3)	(4)	(5)	
log(total release)	1.064*** (0.055)	0.800*** (0.040)	0.793*** (0.048)	0.547*** (0.032)	0.062***	
log(sales)	0.453*** (0.083)	0.601*** (0.088)	0.249*** (0.071)	0.315*** (0.068)	0.038*** (0.007)	
Observations Adj. R-squared	85,096	92,746 .05	78,012	92,746 .04	92,746 .05	
Industry-year FE Model	Yes Logit	Yes OLS	Yes Logit	Yes OLS	Yes OLS	

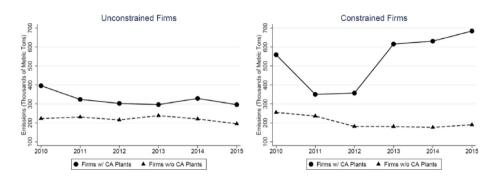
Mechanism

	(1	1)	(2)	((3)	(4)
Nonattainment=1	-0.30	06***	-0.253***	0.	159	0.017
	(0.0))74)	(0.072)	(0.	106)	(0.070)
Nonattainment=1 × Text FC	`		, ,	-0.	215**	, ,
				(0.	107)	
Nonattainment=1 × HM debt					-	-0.867*
						(0.481)
	70th per	rcentile	75th per	centile	80th per	centile
	(1)	(2)	(3)	(4)	(5)	(6)
Large polluter=1 × Text FC	-0.283***		-0.247***		-0.283***	
<i>2</i> 1	(0.086)		(0.087)		(0.091)	
Large polluter=1 × HM debt	, ,	-0.913**	,	-0.728*		-0.770*
		(0.401)		(0.398)		(0.411)


Bartram et al. (2022)	
"Real effects of climate policy: Financial constraints and spillovers"	

Research design: DiD

- In 2013, California introduces its Cap-and-Trade program: huge rise in emission costs
- Compare California vs. non-California plants, pre vs. post 2013


$$\log(1 + \mathsf{Emission}_{i,j,t}) = \alpha + \beta \; \mathsf{CalPlant} \;_{j} \times \; \mathsf{After} \;_{t} + \gamma' X_{i,t} + a_{j} + b_{k,t} + \varepsilon_{i,j,t} \tag{3}$$

Spillover of emissions I

- Constrained firms reallocate CO_2 emission from CA to other states
- No allocation for unconstrained firms

Spillover of emissions II

For plants in other states,

ullet NonCA plants increase CO_2 emission if they are from financially constrained firms and related to a CA plant

Mechanism: reallocation

	Horizontal (1)	Vertical or unrelated (2)	Horizontal (3)	Vertical or unrelated (4)	Horizontal (5)	Vertical or unrelated (6)	Horizontal (7)	Vertical or unrelated (8)
$CalPlant \times After \times Const.$	-0.359*** (0.103)	-0.154* (0.078)	-0.359*** (0.105)	0.030 (0.142)	-0.351*** (0.109)	0.011 (0.125)	-0.370*** (0.102)	-0.005 (0.152)
p: Hor <ver< th=""><th>[0.0]</th><th>06]</th><th>0.0]</th><th>01]</th><th>[0.</th><th>01]</th><th>[0.</th><th>02]</th></ver<>	[0.0]	06]	0.0]	01]	[0.	01]	[0.	02]
	Horizontal	Vertical or unrelated						
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
DivFirm × After × Const.	0.332**	0.073	0.315**	0.026	0.316**	0.017	0.318**	0.038
	(0.154)	(0.141)	(0.148)	(0.133)	(0.149)	(0.131)	(0.149)	(0.130)
p: Hor>Ver	[0.	.11]	[0.	.07]	[0.	07]	[0.	08]

ullet CA-plants reallocate CO_2 emissions to more similar plants in other states.

Mechanism: reallocation to excess capacity

	Excess cap target non-Cali	
	High (1)	Low (2)
CalPlant \times After \times Const.	-0.457*** (0.147)	-0.021 (0.189)
p: High <low< td=""><td>[0.03</td><td></td></low<>	[0.03	
	Excess caj target non-Caj	
	High (1)	Low (2)
DivFirm × After × Const.	0.409** (0.185)	0.137 (0.272)
p: High>Low	[0.2	0]

ullet CA-plants reallocate CO_2 emissions to plants that have excess capacity in other states.

Mechanism: efficiency vs. production

	Log(1+Emissions) (1)	Log(1+Emissions/Sales) (2)	Log(1+Sales) (3)	Log(1+Employment) (4)	Log(1+Excess capacity) (5)
CalPlant \times After \times Const.	-0.390***	0.118	-0.491***	-0.165***	-0.237
	(0.094)	(0.092)	(0.080)	(0.037)	(0.154)
CalPlant × After	0.075	0.051	0.044	0.079***	0.354***
	(0.073)	(0.086)	(0.071)	(0.021)	(0.085)

• CA-plants reallocate through production reduction, not emission efficiency improvement.

Firm outcome

		Log(1+Firm total emissions)			al efficiency
	(1)	(2)	Placebo sample (3)	ROA (4)	Tobin's q (5)
After × Constrained	0.293** (0.114)	0.300*** (0.108)	-0.053 (0.088)	0.015 (0.013)	-0.041 (0.057)

• At the firm level, California's Cap-and-Trade increases overall CO_2 emissions, especially for constrained firms.

Conclusion

- Financial constraint causes the firm to emit more pollution (Xu and Kim, 2022)
 - on average 14% rise
- Firms trade off the marginal costs of emission reduction and the marginal costs of legal liabilities
 - Financial constraints increase the cost of abatement, inducing underinvestment in abatement.
- Rising regulation costs force financially constrained companies to reallocate emissions (Bartram et al., 2022)
 - Emission costs to constrained firms under the California cap-and-trade rule is 9% (4%) increase in tax expenses (interest expenses).
- Firms trade off emission costs and reallocation costs
 - Financial constraints induce emission reallocation due to incompetence in paying additional emission costs by FC firms.

References

- Bartram, S. M., K. Hou, and S. Kim (2022). Real effects of climate policy: Financial constraints and spillovers. *Journal of Financial Economics* 143(2), 668–696.
- Xu, Q. and T. Kim (2022). Financial constraints and corporate environmental policies. *The Review of Financial Studies 35*(2), 576–635.